

Pinellas County Stormwater Management Manual Training Workshop

SMALL COMMERCIAL AREA CASE STUDY

PRE

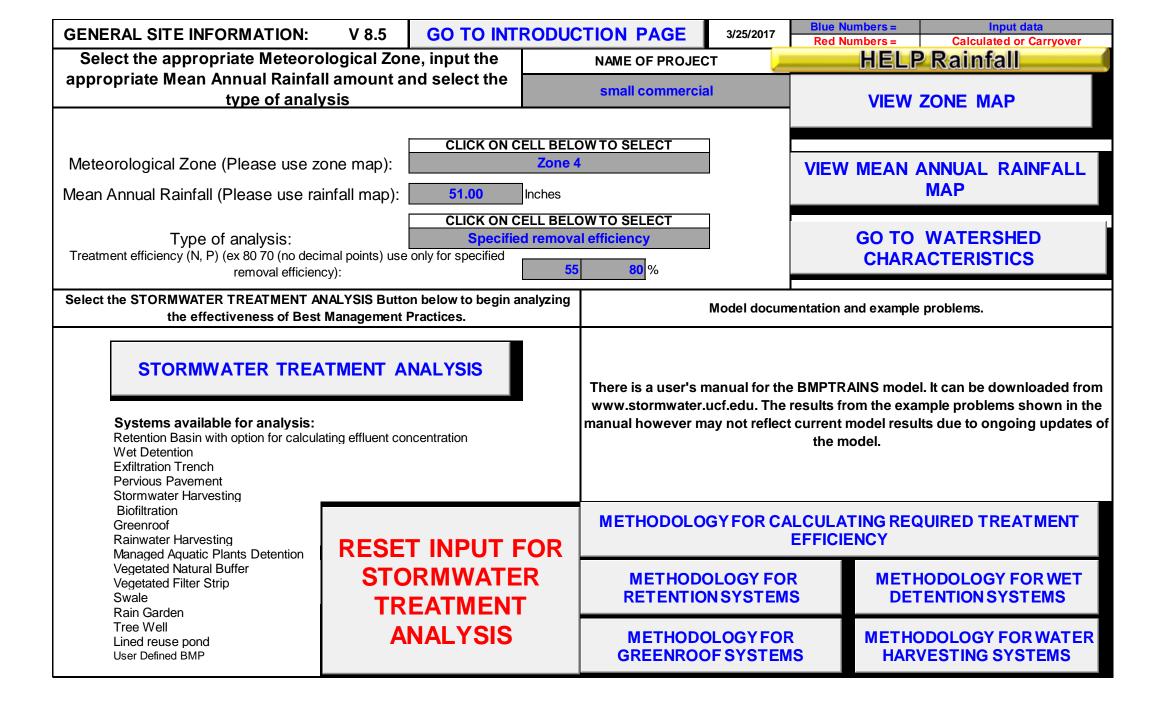
Bay Pines Boulevard (ALT 19)

Figure 2.1-I - Pre-2013 Redevelopment Project

POST (ACTUAL)

Land Uses	Site Size (Acres)	Impervious Area	Directly Connected Imp Area (DCIA)	Non-DCIA Pervious Area	Soil Types	SHGWT	Stormwater System? Type?
Existing: Light Industrial	1.79	1.66 acres 93% impervious	1.66 acres Project %DCIA = 93%	0.13 acres CN=80	HSG B	3' below land	None
Proposed: High Intensity Commercial	1.79	1.66 acres 93% impervious	1.66 acres Project % DCIA = 93%	0.13 acres CN=80	HSG B		BMP Train

WHICH IS THE APPROPRIATE PERFORMANCE STANDARD?


Post = 90% of Pre

VS.

55% N and 80% P reduction

Post = 90% of Pre discharges 7.85kg of N and 1.71kg of P. This is only 52% removal for N and 26% for P.

HOWEVER, this level of treatment requires 1.61 feet of retention in the 0.13 ac. retention area and only 1.0 feet of storage is available.

WATERSHED CHA	GO TO STORMWATER TREATMENT ANALYSIS			Blue Numbers = Red Numbers =	Input data Calculated	HELP - LAND USES/EM.C	
SELECT CATCHMI	CLICK ON CELL BELOW TO SELECT CONFIGURATION A - Single Catchment			VIEW CATCHMENT CONFIGURATION			
CATCHMENT NO.1 CHARACTERISTICS: CLICK ON CELL BELOW TO Pre-development land use: Light Industrial: TN=1.200 TP=			ITOTOTT C TUCKOT		OVERWRITE DEFAULT CONCENT PRE: PC EMC(N): mg/L		NTRATIONS USING: POST: mg/L
with default EMCs Post-development land use: with default EMCs	with default EMCs Post-development land use: With default EMCs CLICK ON CELL BELOW TO S High-Intensity Commercial: TN=2.40 T		SELECT		EMC(P): mg/L mg/L USE DEFAULT CONCENTRATIONS		
Total pre-development catchment area: Total post-development catchment or BMP analysis area: Pre-development Non DCIA CN: Pre-development DCIA percentage: Post-development Non DCIA CN: Post-development DCIA percentage: Estimated BMPArea (No loading from this area)		1.79 80.00 93.00 80.00 93.00 0.13	% %	Average annual post ru Pre-development Annu Pre-development Annu Post-development Ann	age annual pre runoff volume: age annual post runoff volume (note no BMP area): development Annual Mass Loading - Nitrogen: development Annual Mass Loading - Phosphorus: -development Annual Mass Loading - Nitrogen: -development Annual Mass Loading - Phosphorus:		

RETENTION BASIN IN EXISTING DEVELOPMENT

Required retention depth over the watershed to meet required efficiency:	1.460	1.460	1.460	1.460 in
Required water quality retention volume:	0.202	0.000	0.000	0.000 ac-ft
RETENTION BASIN FOR MULTIPLE TREATMENT SYSTEMS (if t	here is a need fo	r additional re	emoval efficien	cies in a series of BMPs):
Retention volume based on retention depth and Total area - BMP area	0.075	0.000	0.000	0.000 ac-ft
Provided retention depth (0.1-3.99 inches over the watershed)	0.540			in
Provided treatment efficiency (Nitrogen):	46.398	0.000	0.000	0.000 %
Provided treatment efficiency (Phosphorus):	46.398	0.000	0.000	0.000 %
Remaining treatment efficiency (Nitrogen):	16.047	55.000	55.000	55.000 %
Remaining treatment efficiency (Phosphorus):	60.822	79.000	79.000	79.000 %
Remaining retention depth needed:	0.920	1.460	1.460	1.460 in

One half inch of retention alone only provides 46% removal efficiency.

CATCHMENTS AND TREATMENT SURFACE DISCHARGE SUMMARY

V 8.5

CALCULATION METHODS:

- 1. The effectiveness of each BMP in a single catchment is converted to an equivalent capture volume.
- 2. Certain BMP treatment train combinations have not been evaluated and in practice they are at this time not used, an example is a greenroof following a tree well.
- 3. Wet detention is last when used in a single catchment with other BMPs, except when followed by filtration

PROJECT TITLE	small commercial		Optional Identification		
-		gas station	Catchment 2	Catchment 3	Catchment 4
BMP Name		Retention Basin			
BMP Name					
BMP Name					

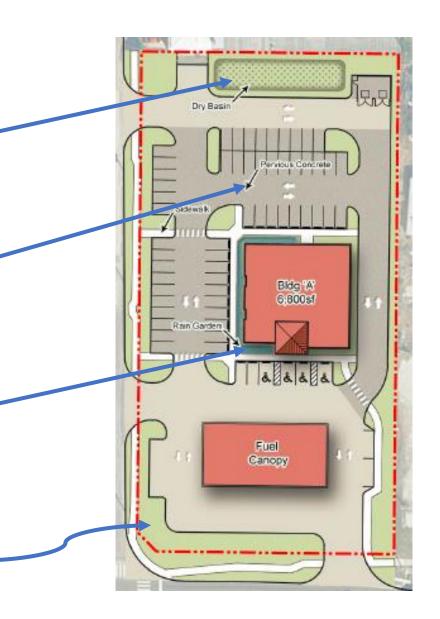
Surface Water Discharge Summary Performance of Entire Watershed Catchment A - Single Catchment Configuration 3/25/2017 Nitrogen Pre Load (kg/yr) 8.72 **BMPTRAINS MODEL** Phosphorus Pre Load (kg/yr) 1.89 **Treatment** Nitrogen Post Load (kg/yr) 16.17 Objectives or 2.32 Phosphorus Post Load (kg/yr) Target for Target Load Reduction (N) % **55** 80 Target Load Reduction (P) % TN NOT MET Target Discharge Load, N (kg/yr) 7.28 Target Discharge Load, P (kg/yr) 0.46 **TP NOT MET** 46 Provided Overall Efficiency, N (%): 46 Provided Overall Efficiency, P (%): 8.67 19.09 Discharged Load, N (kg/yr & lb/yr): 2.74 Discharged Load, P (kg/yr & lb/yr): 1.25 7.50 16.53 Load Removed, N (kg/yr & lb/yr): 1.08 2.38 Load Removed, P (kg/yr & lb/yr):

ALTERNATE PROJECT DESIGN

POSSIBLE BMPs:

Retention

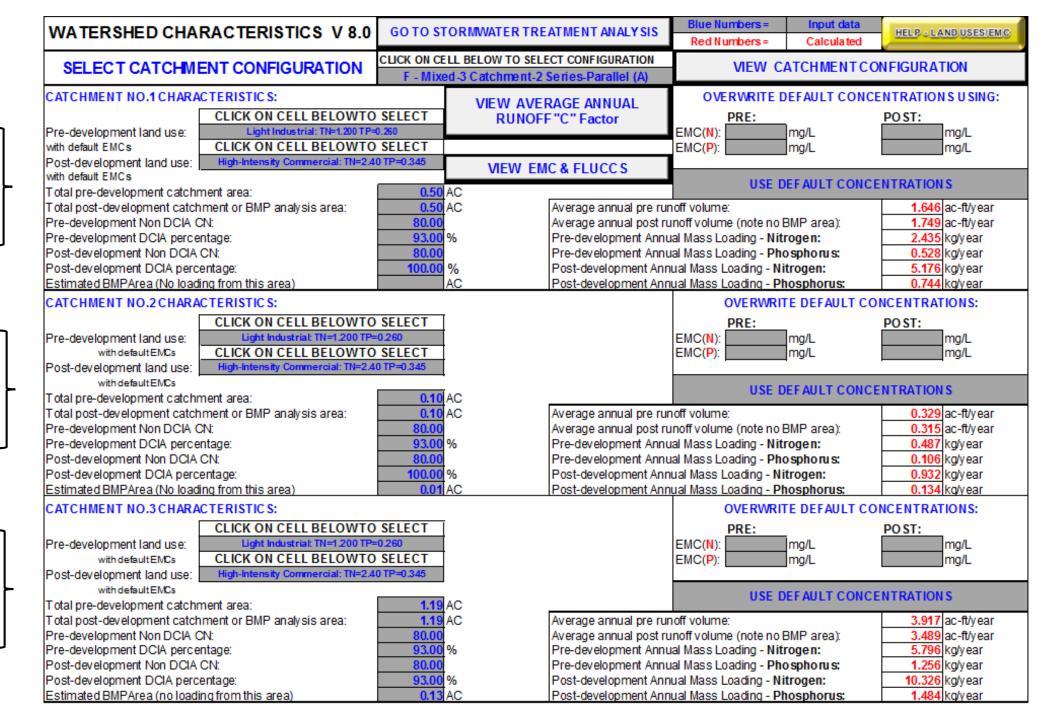
Biofiltration


Pervious Pavement

Interceptor Trees

Tree Wells

Rain Gardens


(Note other potential rain garden areas exist on site.)

Pervious pavement 0.50 ac.

Rain garden 0.10 ac.

Retention 1.19 ac.

	PERVIOUS PAVEM	ENT:		V 8.0	small commercial Manual 3 BMP	Blue Numbe Red Numbe		C	Input dat alculated or C		
	CONTRIBUTING WATERSHED AND PERVIO	OUS PAVEME	ENT CHARAC	TERISTICS:	GO TO STORMWATER TREATMENT ANALYSIS						
	Pervious Pavement Section Storage Calculator (S')				VIEW TYPICAL PERVIOUS PAVEMENT SYSTEM SCHEMATIC						
	1	Thickness	Void Space	Storage	Note: There are loadings from this BMP area needing treatme	ding treatment.		Catchment 2	Catchment3	Catchment 4	
	Layer	(in):	(%):	(in):	Contributing catchment area:		0.500	0.100	1.190	0.000 ac	
	Concrete Per vious Pavement	6.00	25.00	1.500	Required treatment efficiency (Nitrogen):		55.000	55.000	55.000	55.000 %	
# 1	Other Perv. Pvmt. (see note below)				Required treatment efficiency (Phosphorus):		79.000	79.000	79.000	79.000 %	
neı	#57 rock	6.00	21.00	1.260	Storage provided in specified pervious pavement syste	em:	3.260	0.000	0.000	0.000 in	
chr	#89 pea rock	2.00	25.00	0.500	Area of the pervious pavement system:		0.500			ac	
Cat	#4 rock		24.00		Provided retention over the contributing catchment are	a:	3.260	0.000	0.000	0.000 in	
ľ	Recycled (crushed) concrete		21.00		Provided treatment efficiency (Nitrogen):		94.712	0.000	0.000	0.000 %	
	BOLD & GOLD™		9.00		Provided treatment efficiency (Phosphorus):		94.712	0.000	0.000	0.000 %	
	Other Sub Base (see note below)										

(Note: Entire catchment area is pervious pavement.)

RAIN GARDEN / DEPRESSION STORAGE 3/25/2017 V 8.5 These are depressed areas in a landscape for the storage of runoff water. middle back Catchment 4 Loadings from BMP area are contained by the BMP, thus no BMP area load. front 0.500 0.090 1.060 **0.000** ac Contributing catchment area: 55.000 55.000 55.000 **55.000** % Required treatment efficiency (**Nitrogen**): Required treatment efficiency (**Phosphorus**): 80.000 80.000 80,000 80.000 | % Provided retention depth for hydraulic capture efficiency (see below): 0.000 3.061 0.000 **0.000** in 0.000 Provided retention volume for hydraulic capture efficiency: 0.000 0.023 0.000 ac-ft Retention Is this a retention or detention system? **View Media Mixes** Select media mix 0.000 93.992 0.000 0.000 Provided treatment efficiency (**Nitrogen**): 0.000 93.992 0.000 0.000 Provided treatment efficiency (**Phosphorus**): Volume Storage Input data Sustainable void space fraction 0.20 Media volume CF = 2000 Water above media in CF = 600 1000 Thus volume storage CF= 0.000 3.061 0.000 0.000 Used for retention depth above in row 10 & volume storage (inches) =

RETENTION BASIN:	3/25/2017	V 8.5			
RETENTION BASIN SERVING:	I				
Loadings from BMP area are contained by the BMP, thus no BMP area load.	front	middle	back	Catchment 4	
Watershed area cotributing to basin:	0.500	0.090	1.060	0.000 a	С
Required Treatment Eff (Nitrogen):	55.000	55.000	55.000	55.000 %	, 0
Required Treatment Eff (Phosphorus):	80.000	80.000	80.000	80.000 %	, 0
Required retention depth over the watershed to meet required efficiency:	1.536	1.536	1.536	1.536 ir	1
Required water quality retention volume:	0.064	0.012	0.136	0.000 a	c-ft
RETENTION BASIN FOR MULTIPLE TREATMENT SYSTEMS (if the Retention volume based on retention depth and Total area - BMP area	0.000	0.000	0.093	0.000 a	·
Provided retention depth (0.1-3.99 inches over the watershed)			1.050	ir)
Provided treatment efficiency (Nitrogen):	0.000	0.000	68.121	0.000	, 0
Provided treatment efficiency (Phosphorus):	0.000	0.000	68.121	0.000	, 0
Remaining treatment efficiency (Nitrogen) :	55.000	55.000	0.000	55.000 %	,
Remaining treatment efficiency (Phosphorus):	80.000	80.000	37.262	80.000	/ 0
Remaining retention depth needed:					0

CATCHMENTS AND TREATMENT SURFACE DISCHARGE SUMMARY

V 8.5

CALCULATION METHODS:

- 1. The effectiveness of each BMP in a single catchment is converted to an equivalent capture volume.
- 2. Certain BMP treatment train combinations have not been evaluated and in practice they are at this time not used, an example is a greenroof following a tree well.
- 3. Wet detention is last when used in a single catchment with other BMPs, except when followed by filtration

PROJECT TITLE	E small commercial		Optional Identification		
		front	middle	back	Catchment 4
BMP Name		Pervious Pavement	Rain Garden	Retention Basin	
BMP Name					
BMP Name					

Surface Water Discharge Summary Performance of Entire Watershed Catchment F - Mixed-3 Catchment-2 Series-Parallel Configuration 3/25/2017 Nitrogen Pre Load (kg/yr) 8.72 **BMPTRAINS MODEL** Phosphorus Pre Load (kg/yr) 1.89 **Treatment** Nitrogen Post Load (kg/yr) 16.43 Objectives or Phosphorus Post Load (kg/yr) 2.36 Target for **55** Target Load Reduction (N) % **TN MET** Target Load Reduction (P) % 80 Target Discharge Load, N (kg/yr) 7.40 TP MET Target Discharge Load, P (kg/yr) 0.47 Provided Overall Efficiency, N (%): 80 Provided Overall Efficiency, P (%): 80 3.29 7.25 Discharged Load, N (kg/yr & lb/yr): Discharged Load, P (kg/yr & lb/yr): 0.47 1.04 13.14 28.95 Load Removed, N (kg/yr & lb/yr): 1.89 4.16 Load Removed, P (kg/yr & lb/yr):

Conclusions

- 1. BMPTRAINS model is used to evaluate and size treatment systems based on an average annual effectiveness.
- 2. Can easily evaluate effectiveness and cost of various combinations of BMP treatment trains.
- 3. The average annual effectiveness is site specific incorporating rainfall conditions, impervious cover, soil conditions, type of land use, and type of LID BMP.
- 4. LIDs can be analyzed in either series or parallel structure. The estimates stay "true" to the underlying rainfall and catchment conditions.

Pinellas County Stormwater Management Manual Training Workshop

QUESTIONS, REMARKS AND DISCUSSION

